The Particulate Nature of Matter

This note covers the kinetic particle theory, describing the states of matter and diffusion, and the atomic structure, including subatomic particles, isotopes, and nuclide notation.

1. Kinetic Particle Theory
  • ๐Ÿ”น Description of States:
    • ๐Ÿ”น Solids:

      ๐Ÿ”น Particles are closely packed in a fixed lattice, vibrating in place; strong intermolecular forces; definite shape and volume.

    • ๐Ÿ”น Liquids:

      ๐Ÿ”น Particles are close but mobile, sliding past each other; weaker forces than solids; definite volume, no fixed shape.

    • ๐Ÿ”น Gases:

      ๐Ÿ”น Particles are far apart, moving rapidly and randomly; very weak forces; no fixed shape or volume.

  • ๐Ÿ”น Interconversion:
    • ๐Ÿ”น Melting: Solid โ†’ Liquid
    • ๐Ÿ”น Boiling/Evaporation: Liquid โ†’ Gas
    • ๐Ÿ”น Freezing: Liquid โ†’ Solid
    • ๐Ÿ”น Condensation: Gas โ†’ Liquid
    • ๐Ÿ”น Sublimation: Solid โ†’ Gas (e.g., dry ice)
  • ๐Ÿ”น Evidence for Particle Movement:
    • ๐Ÿ”น Diffusion:

      ๐Ÿ”น Random movement of particles from high to low concentration.

    • ๐Ÿ”น In Liquids:

      ๐Ÿ”น Potassium permanganate (KMnOโ‚„) spreads slowly in water.

    • ๐Ÿ”น In Gases:

      ๐Ÿ”น Bromine gas spreads in a sealed container.

  • ๐Ÿ”น Everyday Effects:
    • ๐Ÿ”น Spread of perfume or cooking aromas through air.
    • ๐Ÿ”น Mixing of gases, e.g., car exhaust dispersing in atmosphere.
  • ๐Ÿ”น Effect on Diffusion:
    • ๐Ÿ”น Molecular Mass:

      ๐Ÿ”น Lighter particles diffuse faster (Grahamโ€™s Law: rate โˆ 1/โˆšmolar mass). Example: NHโ‚ƒ (17 g/mol) diffuses faster than HCl (36.5 g/mol).

    • ๐Ÿ”น Temperature:

      ๐Ÿ”น Higher temperature increases particle kinetic energy, speeding up diffusion.

2. Atomic Structure
  • ๐Ÿ”น Relative Charges and Masses:
    • ๐Ÿ”น Proton:

      ๐Ÿ”น Charge +1, mass 1 u

    • ๐Ÿ”น Neutron:

      ๐Ÿ”น Charge 0, mass 1 u

    • ๐Ÿ”น Electron:

      ๐Ÿ”น Charge -1, mass ~1/1836 u (negligible)

  • ๐Ÿ”น Structure of Atom:

    ๐Ÿ”น Nucleus (protons + neutrons) at center with most mass; electrons orbit in shells around nucleus.

  • ๐Ÿ”น Proton and Nucleon Numbers:
    • ๐Ÿ”น Proton Number (Z):

      ๐Ÿ”น Number of protons; defines the element.

    • ๐Ÿ”น Nucleon Number (A):

      ๐Ÿ”น Sum of protons and neutrons.

    • ๐Ÿ”น Example:

      ๐Ÿ”น Carbon-12: ยนยฒโ‚†C (6 protons, 6 neutrons)

  • ๐Ÿ”น Nuclide Notation:

    ๐Ÿ”น Written as แดฌ๐“ฉX , where A = nucleon number, Z = proton number, X = element symbol.

  • ๐Ÿ”น Isotopes:

    ๐Ÿ”น Atoms with same proton number but different neutron numbers. Example: ยนยฒโ‚†C and ยนโดโ‚†C.

  • ๐Ÿ”น Deduction of Numbers:
    • ๐Ÿ”น Neutral Atoms:

      ๐Ÿ”น Protons = Electrons = Z; Neutrons = A - Z. Example: ยนโถโ‚ˆO โ†’ 8 protons, 8 electrons, 8 neutrons.

    • ๐Ÿ”น Ions:

      ๐Ÿ”น Electron count adjusted by charge. Example: Oยฒโป from ยนโถโ‚ˆO โ†’ 8 protons, 10 electrons, 8 neutrons.

  • โš ๏ธ Particles in solids do not move; actually, they vibrate in fixed positions.
  • โš ๏ธ Diffusion rates are the same for all substances; lighter molecules and higher temperatures increase rates.
  • โš ๏ธ Proton number is the same as nucleon number; proton number defines element, nucleon number includes neutrons.
  • โš ๏ธ Isotopes have different chemical properties; they differ mainly in physical properties like mass.

  • ๐Ÿ‘‰ Describe particle arrangement and movement in solids, liquids, and gases, including state changes.
  • ๐Ÿ‘‰ Explain diffusion experiments and relate to molecular mass and temperature.
  • ๐Ÿ‘‰ Practice calculating proton, neutron, and electron numbers using nuclide notation.
  • ๐Ÿ‘‰ Memorize charges and masses of subatomic particles.
  • ๐Ÿ‘‰ Distinguish isotopes by neutron count, not chemical behavior.

๐Ÿ“š Further Understanding